
PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Cellular automata model for citrus variegated chlorosis
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A cellular automata model is proposed to analyze the progress of citrus variegated chlorosis epidemics in
São Paulo orange plantations. In this model epidemiological and environmental features, such as motility of
sharpshooter vectors that perform Le´vy flights, level of plant hydric and nutritional stress, and seasonal
climatic effects, are included. The observed epidemic data were quantitatively reproduced by the proposed
model on varying the parameters controlling vector motility, plant stress, and initial population of diseased
plants.

PACS number~s!: 87.10.1e, 87.19.Xx, 87.23.Cc
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I. INTRODUCTION

Citrus variegated chlorosis~CVC! is an economically rel-
evant disease affecting citrus@1#. In the São Paulo region
~Brazil!, one of the important citrus growing areas of t
world, responsible for about 30% of the world productio
CVC reduces the size and number of fruits by more th
35% @2#. CVC is considered to be potentially the most de
astating citrus disease and represents the main threat t
Brazilian citrus industry, with annual revenues of the ord
of 1.2 to 1.4 billions of dollars. The losses associated w
the disease are estimated at about 100 million dollars ye
@1#.

CVC is caused by a xylem-limited bacterium,Xyllela fas-
tidiosa @3#, transmitted by xylem feeding, suctorial shar
shooter leafhoppers~Hemiptera: Cicadellidae! @4,5#. In São
Paulo, the speciesDilobopterus costalimaiappears to be the
most efficient vector for CVC transmission@5#. At present, a
sweet orange cultivar resistant toX. fastidiosais unknown,
and control practices for CVC~bactericidal agents, system
atic pruning of infected branches, chemical control of ve
tors, and/or rouging of severely affected plants! are expen-
sive, ineffective, or environmentally damaging.

Recent studies on various aspects of the epidemiolog
CVC ~@1#, and references therein! have provided fundamen
tal information which can be used to develop a cellular
tomata ~CA! model of the pathosystem. CA or other ep
demic models could become relevant tools for address
numerous practical and experimental questions: forec
ing the progress and final intensity of CVC, planning a
evaluation of strategies for disease control, and determ
tion of the relevant mechanisms involved in the dise
spreading.

In this paper, we propose a simple CA model to simul
CVC progress in which some epidemiological and enviro
mental features, such as vector motility, plant stress,
seasonal modulations, are included. The simulation res
are compared with CVC progress curves in time and spa
infection patterns observed in the Sa˜o Paulo region.
PRE 621063-651X/2000/62~5!/7024~7!/$15.00
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II. EXPERIMENTAL DATA ON CVC EPIDEMICS

A. CVC progress in time

The CVC epidemic was observed by visual assessm
of typical symptoms occurring on leaves or fruits, in 1
groves of Peˆra, Hamlin, and Natal sweet oranges cultivat
in two farms of the northern areas~Bebedouro and Colina
counties! of São Paulo state, Brazil. In such areas, sever
attacked by CVC, are planted the more susceptible cultiv
having the supposedly most propitious age for disease de
opment. The field data were collected over a 20-month
riod, from September 1994 through March 1996. The CV
incidence was mapped bimonthly and the data for each
and each evaluation were transformed to a proportion
symptomatic plants for temporal characterization of the d
ease spread.

The CVC progress curves are shown, for four differe
groves, in Fig. 1. All of them are double sigmoid, which is
clear indication that CVC is a polycyclic disease charact
ized by the existence of two phases: one in which the dise
spread is fast, contrasted with another in which the epide
development is almost stopped. For each grove the obse

FIG. 1. Observed CVC progress curves in four groves SJ
SJ67, SJ71, and SJ75. The curves represent generalized
parameter logistic fittings to the observed data.
7024 ©2000 The American Physical Society
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PRE 62 7025CELLULAR AUTOMATA MODEL FOR CITRUS . . .
data sets are fitted by five-parameter logistic curves@6# of the
form

N~ t !5
p1

11exp@2~p21p3t1p4t21p5t3!#
. ~1!

Table I gives the corresponding parameters and the c
ficients of determination (R2) have been listed. In addition t
theR2 coefficient, the residual sums of squares for error a
the consistency of the predicted values for the up
asymptotic fraction of diseased plants (p1<1) were take into
account to select the logistic among Gompertz and mono
lecular generalized models with four or five parameters. I
important to note that sigmoid curves can be generated
different models~fitting equations!. Indeed, the temporal in
crease of citrus tristeza virus, whose vectors are aphid
cies, follows a nonlinear Gompertz model@7#.

B. Infected cluster size distribution functions

On any one of the orangeries containing about 103 trees
there is no unique inoculum source. Each single infec
plant or small initial group of infected plants grows by i
oculating its adjacent neighbors, and aggregates with o
affected trees, forming large clusters. As a result, the m
cluster size of infected trees increases in time and, in orde
describe the disease spread, it is necessary to investigat
dynamic aspects of the distribution of infected plant agg
gates generated by the CVC progress.

A cluster of diseased plants has been defined as any s
interconnected infected trees that are spatially isolated f
any other group of diseased plants in the orangery. Then

TABLE I. Coefficients of determinationR2 and estimated val-
ues of the five parameters describing the generalized logistic f
tions used to fit the observed data of CVC progress in four of
studied groves.

Parameter
Grove p1 p2 p3 p4 p5 R2

SJ01 0.223 26.000 1.647 20.158 0.005 0.989
SJ67 0.908 26.414 1.665 20.153 0.005 0.996
SJ71 1.000 24.854 1.307 20.126 0.004 0.989
SJ75 0.526 26.638 1.396 20.120 0.004 0.993
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cluster size distribution functionns(t) is the fraction of these
clusters consisting ofs infected plants at timet, and was
directly obtained by counting the number and size of d
eased clusters present in the spatial patterns of the CVC
demic, like those shown in Fig. 2, at each observation tim

Figure 3 shows the distributionns(t) for one of the ob-
served orangeries. It suggests thatns(t) follows a power-law
distribution, that is,ns(t);s2a, over at least one decade o
the arguments at any given time of CVC progress. A powe
law distribution indicates the absence of a characteristic s
for the size of diseased plant aggregates. The exponents
scribing the power-law decay ofns(t) have values between
1.4 and 1.8 for all the orangeries studied. These values
characteristic of 1/f noise@23#, as 1/f g spectra withg in the
interval @0,2# are commonly called. Therefore, the CVC in
fection dynamics has a 1/f -like signal, which, from the
physical point of view, is a sign of a cooperative pheno
enon occurring in a spatially extended nonequilibrium s
tem.

C. Self-affine profiles in CVC evolution patterns

Self-affine profiles@8,9# can be generated from the spati
patterns of diseased plants using various methods. The
plest of them is a 1:1 mapping between a given spatial c
figuration at timet, such as those shown in Fig. 2, and
‘‘walk process’’ @10,11#. In this method each binary symbo
s i(t) describing the plant state@s i(t)50: normal; s i(t)
51: diseased# is identified with a step~to the right or to the
left! of a one-dimensional walk.

Specifically, to a unique spatial patter
$s1(t),s2(t), . . . ,sN(t)% of N plants at fixed timet corre-
sponds a profile given by the sequence of walker displa
mentshi after i unit steps,$h1(t),h2(t), . . . ,hN(t)%, defined
as

hi~ t !5(
j 51

i

r j~ t !, ~2!

wherer j51 if s j51 ~step to the right!, or r j521 if s j
50 ~step to the left!. Profiles generated at two distinct ob
servation times in a given orangery using this walk proc
are shown in Fig. 4.

After obtaining the profiles by the walk process, we c
investigate the nature of their correlations through analy

c-
e

e

m-
FIG. 2. Temporal sequence of CVC incidenc
maps in the grove SJ71 with 3960 Peˆra orange
trees. Six representative evaluations~11/94, 01/
95, 05/95, 09/95, 11/95, and 01/96! are shown.
Each black square corresponds to one sympto
atic plant.
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7026 PRE 62M. L. MARTINS et al.
of the profile roughness@9#. The statistical measureW, which
characterizes the roughness of the walk profile, is defined
the rms fluctuation in the displacement,

W~N,t !5A1

N (
i 51

N

@hi~ t !2h̄~ t !#2, ~3!

where

h̄~ t !5
1

N (
i 51

N

hi~ t ! ~4!

is the mean displacement of the walk.
For self-affine profiles the roughnessW(N) will be de-

scribed by a power-law scaling,

W~N!;NH, ~5!

with the exponentH restricted to the interval@0,1# and re-
lated to the fractal dimension of the profile@8#. H51/2 cor-

FIG. 3. Observed cluster size distribution functionns(t) of clus-
ters containings diseased plants for the grove SJ71 at the obse
tion time t56 months. The straight line represents the best fit to
data; its slope gives the exponenta describing the power-law deca
of ns(t).

FIG. 4. Self-affine profiles generated by the walk proce
method at two distinct observation times in the grove SJ75, c
taining 2880 Peˆra orange plants. The rescaled profile att514
months was obtained by subtracting the corresponding linear fit
of the data. The inset is an enlargement of the central region o
profile at t514.
y
responds to a random walk;H.1/2 implies that the profile
presents persistent correlations, and profiles withH,1/2 are
anticorrelated.

As one can see in Fig. 4, the profiles generated from
CVC epidemic patterns usually have drift. This is the reas
that we use the method of roughness around the rms stra
line @12# to evaluate the Hurst exponentH. In this method
the roughnessW(N,e) on the scalee is given by

W~N,e!5
1

N (
i 51

N

wi~e! ~6!

and the local roughnesswi(e) is defined as

wi~e!5A 1

2e11 (
j 5 i 2e

i 1e

$hj2@ai~e!xj1bi~e!#%2. ~7!

ai(e) andbi(e) are the linear fitting coefficients to the dis
placement data in the interval@ i 2e,i 1e# centered on the
site i. Again, self-affine profiles satisfy the scaling law

W~e!;eH. ~8!

The method described here was used to characterize
spatio-temporal patterns generated by elementary o
dimensional deterministic cellular automata@13#.

A typical log-log plot ofW(e) versuse used to calculate
the Hurst exponent is shown in Fig. 5. This exponent ch
acterizes the spatial patterns generated by a CVC epide
For all the analyzed orangeries the profiles are self-af
with Hurst exponents markedly different from 1/2, whic
means that long-range correlations present in the spatial
ease patterns. Also, the roughness exponent increases
an initial value around 1/2, indicating a random infectio
pattern at the beginning, toward its maximum value 1, wh
corresponds to a totally infected orangery. Thus our res
show that a CVC epidemic gives rise to aggregated patte
in which the inoculum level tends to be high in scatter
sequences of neighboring plants, i.e., infected plants ten
be close to other diseased trees and the same holds for
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e

s
-

g
e

FIG. 5. Typical log-log plot ofW(e) versuse used to calculate
the roughness or Hurst exponent characterizing a rough profile
this case the CVC spatial patterns in grove SJ75 at two dist
observation times. The Hurst exponent corresponds to the slop
the straight line fitting the linear part of the curve.
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PRE 62 7027CELLULAR AUTOMATA MODEL FOR CITRUS . . .
mal plants. Therefore, it appears that the pathogen occu
small clusters which progressively expand by a contag
process mediated by vectors that predominantly spread f
plant to plant.

III. A CELLULAR AUTOMATA MODEL FOR CVC

Stochastic CA models have been used before in plant
thology to simulate diseases spreading through spore
persal@16#, the infection dynamics ofR. Solani@17#, and the
infection of cereal roots by the take-all fungus@18,19#, but
traditionally the mathematical modeling of plant disease
based on systems of differential equations@19#.

CAs are totally discrete dynamical systems~discrete
space, discrete time, and discrete number of states! which
provide simple models for a great number of problems
science@14,15#. With each site~denotedi ) is associated a
variable s i , which can be in K different states s i
50,1, . . . ,K21. The dynamics is defined, at each time st
by rules depending on the values at previous times of$s i%
associated with a given number ofq arbitrary sites~called
inputs!. Usually one considers regular lattices and the inp
refer to the sites in the local neighborhood only. The lo
rules of a CA may be probabilistic or deterministic and t
sites are simultaneously updated.

In order to design the CA model for CVC spreading, w
take into account the following basic features of the CV
pathosystem characterized in the previous section. The
teriumX. fastidiosais transmitted by sharpshooter vectors
rather limited motility in the groves. This hypothesis is co
sistent with the results obtained for the roughness or H
exponents describing the CVC infection patterns. In disea
plants, the bacterium is systemic; nutritional imbalance a
general weakness are commonly observed. Thus, the infe
sites continuously act as inoculum sources to other hea
plants. Since there has been no measured effect of wind
rection or machine based cultural practices on CVC spre
ing @1#, the vector flies were assumed to be completely r
dom in our model. Also, in healthy stressed trees
observed sharpshooter population is small, since these
sects are preferably attracted by plants with new vegeta
growth. Finally, as shown by the CVC progress curves, s
sonal effects play a central role in disease spreading. In
the fastest CVC spreading progress is observed f
September/October~flowering! through March~end of sum-
mer!, a period associated with high temperatures, reg
rains, and vegetative growth. The seasonal modulations
included in the CA model through variation in the motility o
sharpshooter vectors as well as in the fraction of norm
plants under hydric and nutritional stress. The functio
form assumed to model such seasonal variations in
model is a sine wave function.

In our CA model the orangery is represented by squ
lattices of linear sizeL with null fixed boundary conditions
~isolated grove, i.e., all the state variables are zero out
the lattice!. The state of each plant is described by two bina
variabless i , j

(1) ands i , j
(2) , wherei , j 51,2, . . . ,L. s i , j

(1)50 rep-
resents a healthy~normal! plant and s i , j

(1)51 a diseased
plant, whereass i , j

(2)51 represents a plant under hydric
nutritional stress ands i , j

(2)50 a nonstressed plant. Finally
the fraction of inoculative vectors at each site is also rep
in
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sented by a binary variablet i , j . t i , j50 means a low fraction
of inoculative sharpshooter leafhoppers in the insect pop
tion andt i , j51 a high inoculative fraction.

In all simulations, random initial conditions have bee
used in which any plant of the lattice is diseased with pro
ability pin f , and stressed with probabilitypst(0). Since CVC
causes severe stress in a diseased plant@1#, an infected tree
(s i , j

(1)51) immediately becomes stressed (s i , j
(2)51) in our

model.
All the sites are simultaneously updated using the follo

ing local rules.
~i! For an infected site the corresponding state at the n

time step iss i , j
(1)51, s i , j

(2)51 ~diseased and stressed tree!,
andt i , j51 ~high fraction of inoculative vectors!. In addition,
as shown in Fig. 6, each infected site acts as an inocu
source for nv(t) distinct plants at distancer k , k
51,2, . . . ,nv , chosen at random according to a symmet
Lévy distribution

p~r !5
1

2pE2`

1`

dt exp@ i t ~m2r !2utua#. ~9!

Thus, the lengths of each of thenv(t) vector flights are not
constant but rather are chosen from a probability distribut
with a power-law tail. Each one of these selected neighb
will assume, at the next time step, the states i , j

(1)51, s i , j
(2)

51, and t i , j51, if it is a normal and nonstressed plan
Otherwise, the selected neighbor will stay in the same s
as previously. Thus, in our CA model a healthy stressed
is not infected by CVC, since the main vectors~D. costali-
mai andAcrogoniaspp.! are preferentially observed in plan
exhibiting young buds and leaves. In contrast, a healthy
nonstressed plant becomes diseased if it is reached by in
lative vectors coming from at least one infected site.

~ii ! For a normal~stressed or nonstressed! plant not a
target of a given diseased plant, the corresponding stat
the next time step iss i , j

(1)50 ~normal! andt i , j50 ~low frac-
tion of inoculative vectors!. Yet the value ofs i , j

(2)50 or 1 is
chosen at random with probabilitypst[12pnst(t).

~iii ! In order to simulate the seasonal effects on both pl
stress and vector motility, the number of inoculative vec
flights nv(t) and the probability associated with a no
stressed plantpnst(t) are periodic functions of time given b

FIG. 6. Schematic representation of CVC spreading from a
eased plant~central gray square! used in our CA model. The centra
infected site acts as an inoculum source fornv(t)53 other distinct
sites whose distancesr are chosen from a symmetric Le´vy distribu-
tion. These ‘‘target’’ sites are reached through the vector flies r
resented by the arrows.nv(t) changes seasonally with time.
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FIG. 7. Comparison between
the CA generated and fitted CVC
progress curves for groves~a!
SJ01,~b! SJ67,~c! SJ71, and~d!
SJ75. The observed data are al
shown, and the CA parameter
used are those listed in Table I
The data correspond to an avera
over 100 different realizations o
CA evolution. The error bars are
equal to or smaller than the sym
bol size.
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nv~ t !5n01INTFn0 sinS 2pt

T
1f D G , ~10!

pnst~ t !5pmin1~122pmin!3
11sin~2pt/T1f!

2
, ~11!

where INT means the integer part,n0 is the time averaged
number of inoculative vector flights,pmin is the minimum
probability of finding a nonstressed plant, andT is the period
of one year.f is a common phase angle to describe poss
time shifts between the simulated and field data.

Finally, we shall discuss some simplifications of our C
model for CVC progress. The use of a symmetric perio
function to model the seasonal effects should be though
as a rough approximation to the much more complex
matic variations observed in nature. Another simplification
that once infected a given plant immediately acts as an
oculum source, in contrast to the classical notion of a disc
tinuous infectious period. It is known that the spread of d
ease involves the interplay of two dynamical processes:
mechanisms of transmission and the evolution of the pa
gen within hosts. The basic questions of how the bact
spread within the xylem system and what is the mechan
of pathogenesis in CVC are unanswered. In particular
seems that the CVC symptoms in plants depend on the
and extent of colonization by the bacteria. Also, a rec
le
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study @20# shows that efficient transmission ofX. fastidiosa
by vectors occurs only after its population overcomes
threshold in plant hosts. In addition, the transmission r
increases as the bacterial population in a plant increa
These features are not included in our CA model due to
lack of information about the system ofX. fastidiosa in
citrus.

IV. RESULTS

Now we shall report on the simulation results for our C
model. In all simulations a linear sizeL5200, a seasona
period T512 months~one year!, and a phase anglef5
260° ~a shift of two months between the observed a
simulation initial times! were used. The remaining five CA
parameters, namely,n0 , pin f , pmin , m, anda, were varied in
order to compare the simulated and observed CVC prog
curves. The results for four groves are shown in Fig. 7.
one can see, the CA progress curves show qualitatively
same functional behavior as the measured curves. A sur
ingly quantitative agreement between the CA and the
served CVC progress curves was even obtained. The
parameter values are listed in Table II. Therefore our sim
lation results suggest that the Le´vy distribution of vector
flights is universal, withm54 anda50.68. The same holds
true forn0, the time averaged number of sharpshooter vec
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PRE 62 7029CELLULAR AUTOMATA MODEL FOR CITRUS . . .
flies starting from each infected plant, which assumed
value 5 for all four simulated groves.

At this point, it is interesting to note that our CA mod
even predicts triple, quadruple, or greater sigmoid progr
curves depending on the time elapsed up to a total infec
of the grove. This simulation prediction can easily be tes
simply by observing the CVC progress in the field for
period greater than 20 months as was done in the pre
work. Moreover, such triple or quadruple sigmoid curves c
be mathematically modeled by using generalized logis
monomolecular, or Gompertz functions only if the disea
progress curves are subdivided into three or four parts
are analyzed separately. However, this approach is in
equate to describe the entire disease dynamics and to d
mine several parameters of epidemiological importa
@21,22#.

Figure 8 shows a simulated temporal sequence of C
incidence maps qualitatively similar to the observed spa
patterns of CVC~see Fig. 2!. From such incidence maps, on
can determine the dynamic infected cluster size distribu
function ns(t) and the roughness exponentH characterizing
the self-affinity of CVC infection profiles. Figures 9 and 1
show, respectively, the cluster size distribution functi
ns(t) and typical log-log plots ofW(e) versuse correspond-
ing to the simulated infection maps for the grove SJ71
various observation times. Both the power-law decay of
infected cluster size distribution function and the roughn
exponents characterizing the spatial disease patterns ind
the presence of long-range correlations in CVC devel
ment. Roughness exponents greater than 1/2 mean that i
neighborhood of a diseased plant the probability of find
another infected tree increases. A significant aggregatio
diseased plants suggests that the pathogen predomin
spreads from plant to plant. Since our CA model permits f

TABLE II. CA parameters used to simulate CVC progre
curves corresponding to the observed data for four groves.

Parameter
Grove m a n0 pin f pmin

SJ01 4 0.68 5 0.0002 0.001
SJ67 4 0.68 5 0.04 0
SJ71 4 0.68 5 0.06 0.35
SJ75 4 0.68 5 0.009 0
a
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simulations of many large samples of artificial CVC path
systems in various epidemiological contexts, the numer
values for the exponentsa andH can be determined with a
reliable statistical precision difficult to attain in actual fie
observations.

It is important to emphasize that a simple random w
distribution for the inoculative vector flights constrained to
local neighborhood of radiusr (t) around each diseased pla
also generates progress curves in good agreement with
field data. However, the resulting CVC incidence maps
clearly different from those observed. Random flights of
oculative vectors produce spots of diseased plants artifici
isolated in space, which grow to merge with other infect
clusters. In contrast, a Le´vy distribution permits rare long-
range vector flights, which appears to be an essential fea
in explaining the scale invariance observed in CVC spre
Indeed, conventional random walks used to model forag
behavior in biology@24# predict a Poisson instead of a scal
invariant power-law distribution. Thus, our results sugg
that the inoculative sharpshooter leafhoppers (;1 cm in
size! perform long flights of random foraging, searching f
nonstressed plants with new vegetative growth unpredicta
dispersed over several square kilometers. A possible ex
nation is that, for insects operating in swarms or flocks co
prised ofN walkers, Lévy flight search patterns~for which
Nt sites are visited aftert steps! are much more efficient than
Brownian walk foraging patterns@for which only t ln(N/ lnt)
distinct sites are visited# @25#. It is interesting that Le´vy flight
search strategies are also observed in albatrosses@26#.

V. CONCLUSIONS

In this study a spatio-temporal analysis of CVC spre
was carried out. The shape of the observed CVC prog
curves was double sigmoid, best fitted by a five-parame
generalized logistic function. This means that CVC is a po
cyclic disease in which a phase of rapid progress altern
with another of almost no change. In addition, both t
power-law decay of the infected cluster size distributi
functions and the roughness exponents characterizing
spatial disease patterns indicate the presence of long-r
correlations in CVC development.

In order to understand the basic mechanisms by which
features discussed above emerge, a CA model was propo
It takes into account the motility of sharpshooter vectors,
e

e
ic
FIG. 8. A simulated sequenc
of CVC incidence maps in the
grove SJ71. Each black squar
corresponds to one symptomat
plant.
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level of plant hydric and nutritional stress, and seasonal
matic effects. By varying the CA parameters controlli
these factors, a good agreement between the simulation
all the observed data was achieved, suggesting that the a
relevant mechanisms of CVC spreading were really captu
and evidenced by the evolution rules of the proposed
model. Therefore, our model suggests that the average n
bernv(t) of Lévy flights performed by the sharpshooter ve

@1# F. F. Laranjeira, MS dissertation, Universidade de Sa˜o Paulo,
ESALQ, Piracicaba, Brazil, 1997~unpublished!.

@2# D. A. Palazzo and M. L. V. Carvalho, Laranja, Cordeiro´polis
13, 489 ~1992!.

@3# M. J. G. Beretta, R. C. S. Coelho, A. M. B. Leal, T. T. Gam
R. F. Lee, and K. S. Derrick, Fitopatol. Bras.18, ~supplement!
277 ~1993!.

@4# J. R. S. Lopes, M. J. G. Beretta, R. Harakava, R. P.
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FIG. 10. Typical log-log plot ofW(e) versuse corresponding to
the simulated infection profiles for the grove SJ71 at two obser
tion times. The straight line represents the best fit to the data
slope gives the roughness exponentH describing the profile. The
data correspond to an average over 20 different realizations of
evolution.


